Form Approved

REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188 Washington, DC 20503.
1. AGENCY USE ONLY ( Leave Blank) 2. REPORT DATE 03/15/02 3. REPORT TYPE AND DATES COVERED
Final, 08/64/1998-12/34/200 1~
20Mard g = jF [Qecs OF

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Adaptive Control of Nonlinearly Parameterized Systems DAAG55-98-1-0235

6. AUTHOR(S)
Anuradha M. Annaswamy

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Massachusetts Institute of Technology REPORT NUMBER
Department of Mechanical Engineering
77, Mass Ave., Cambridge, MA 02139

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

U. S. Army Research Office

P.O. Box 12211 Sy 7,s5-Cf

Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official

Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

This project pertains to the development of a theory for adaptive contro! of nonlinear dynamic systems that are nonlinearly
parameterized (NLP). Developments in NLP systems that have been carried out as a part of this project relax the ubiquitous
assumption made in the context of adaptive control which is that the unknown parameters occur linearly.
During the past year, we have derived several new results related to NLP systems, and can be grouped under two categories:

(i) Control of nonlinear systems with a triangular structure,

(ii) Parameter convergence in NLP systems.
The class of systems considered in (i) includes high-dimensional nonlinear systems connected in chain and triangular forms, examples
of which include Hammerstein-Uryson models and recurrent neural networks. Global stabilization and tracking can be guaranteed for
such systems in the presence of unknown parameters that occur nonlinearly.
The results related to (ii) pertain to conditions of persistent excitation (PE) under which parameter convergence occurs in a class of
discrete and continuous NLP systems. It is shown that for different classes of transcendental functions, distinct PE conditions can be
derived that guarantee parameter convergence. Applications to parameter estimation in sigmoidal functions and identification of
unknown frequencies of a sinusoidal signal are presented.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Nonlinear parametrization, Triangular forms, Nonlinear systems, adaptive control,
persistent excitation, parameter convergence, sigmoidal nonlinearities, frequency estimation

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OR REPORT ON THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)
Prescribed by ANSI Std. 239-18
298-102

Enclosure 1

20030605 067




Adaptive Control of Nonlinearly Parametrized Systems
DAAGS55-98-1-0235

Anuradha M. Annaswamy 110N STATEMENT A
. DISTRIBU :
Final Report to the ARO Approved for Public Release -
Distribution Unlimited

Contents

1 Introduction 2
2 Triangular structures 2
3 Parameter Convergence 5
3.1 Convergence in discrete-time systems . . . ... ... ... . ... . 6

3.1.1  Parameter convergence in the presence of concave/convex nonlinear pa-
rameterization . . ....... ... . 6
3.1.2 Anexample of NLP-persistent excitation . .. ... ... . .. . _ 8
3.13 Aspecialcase. . . ... .. 8
3.2 Parameter Convergence in Continuous-time Systems . . ... . ..... .. . .. 9

3.2.1 Parameter Convergence in Systems with Convex/Concave Parameterization 10

3.2.2  Sufficient Condition for Parameter Convergence ... ......... . . 11

323 Examples . . ... ... 11

3.2.4 Parameter Convergence in Systems with a General Parameterization . . . . 13

3.2.5 SimulationResults . ... ...... ... ... . . . .. . . 17

4 Summary 20
5 Personnel and Inventions 20
6 Publications 20
References 21
Appendices 23



1 Introduction

This project pertains to the development of a theory for adaptive control of nonlinear dynamic sys-
tems that are nonlinearly parametrized (NLP). Nonlinearly parameterized (NLP) dynamic systems
are ubiquitous in practical applications. Problems related to friction compensation [1], reactors [2]
are some of the examples. A large class of nonlinear models which are combinations of linear dy-
namics together with static nonlinearities such as Hammerstein-Uryson representations [3], as well
as neural network models [4] are examples of dynamic systems with nonlinear parameterization.

One of the most common assumptions made in the context of adaptive control is that the un-
known parameters occur linearly, and appear in linear [5] and nonlinear systems [6, 7, 8, 9]. The
field of adaptive control has, by and large, treated the control problem in the presence of paramet-
ric uncertainties with the assumption that the unknown parameters occur linearly [5]. Whether in
an adaptive observer or an adaptive controller, the assumption of linear parametrization has dic-
tated the choice of the structure of the dynamic system. For instance, in adaptive observers, the
focus has been on structures that allow measurable outputs to be expressed as linear, but unknown,
combinations of accessible system variables. In direct adaptive control, a model-based controller
is chosen so as to allow the desired closed-loop output to be linear in the control parameters. In
indirect adaptive control, estimators and controllers are often chosen so as to retain the linearity
in the parameters being estimated. The design of stable adaptive systems using the classical aug-
mented approach as in [5] or using adaptive nonlinear designs as in [10] relies heavily on linear
parametrization.

The problem is an important one both in linear and nonlinear dynamic systems, albeit for dif-
ferent reasons. In nonlinear dynamic systems, despite the fact that the majority of results have
sought to extend the ideas of feedback linearization to systems with parametric uncertainties using
the certainty equivalence principle, it is only within the context of linearly parametrizable non-
linear dynamics that global results have been available. Obviously, it is a nontrivial task to find
transform methods for general nonlinear systems so as to convert them into systems with linear
parametrizations. In linear dynamic systems, it is quite possible to transform the problem into one
where unknown parameters occur linearly. However, such a transformation also can result in a
large dimension of the space of linear parameters. This has a variety of consequences. The first
is due to over parametrization which requires much larger amounts of persistent excitation or re-
sults in a lower degree of robustness. The second is that it can introduce undue restrictions in the
allowable parametric uncertainty due to possible unstable pole-zero cancellations [11].

During the past three and half years, we have derived several new results related to NLP sys-
tems, and can be grouped under two categories: (i) Control of systems with a triangular struc-
ture[P1}, and (ii) Parameter convergence in NLP systems[P2]-[P6]. These results are summarized

below.

2 Triangular structures

The stage for controlling NLP systems has been set in [12, 13, 14, 15], where a new approach was
developed to accommodate the parametric nonlinearity. In these investigations, it was assumed



that the underlying system satisfies the matching conditions[16]. That is, the nonlinear system is
of the form

Xp = A X, + b(f(¢(t)a 0) + u) (1)

where f is a scalar nonlinearity in the unknown parameter 6. This leads to the obvious question
as to whther the approach in [12] can be extended to systems where these matching conditions are
not satisfied. Investigations in this direction led to the following result:

The class of NLP-systems that we considered is of the form
z1 = z+ fi(z,0)

22 = zZ3 (2)

Zn = u
where 6 € a compact set in IR. The goal is to find a u that globally stabilizes the system when 8 is
unknown and z;’s are accessible.

The following controller can be shown to lead to global stability. Define a tuning error e,,_;
using the following recursive relation:

€ = 21
e1 = 2+ q(a)
e2 = e+ 23+ go(z1,22) 3)
e = e,-_2+zi+1+gi(zl,...,zi) 1=1,...,n—1
where
— 0
gi(z1,...,z) = kz‘-—l(zl’---:zi—l)+hi—1(zla---7zi——l)+‘a%ziy 1=2,...,m—1
1
ko(Zl) = kl(zl) = 0
Bg 877:1
k = Lz —
2(Z1,22) Z9 8 2 + 82’1 Z9
dg? Ok Oh;_
k' 7 = ki— i 1 — i-1 __1_._1..
(21,5 2) 2+Z+<BZ% )Zz+ =% 1+Z(8zk 92 )Zk+1,
1=3,...,n—1
Bo . _ 0g
(Zl, ) f1(21, ), hl(zlaa)— 87 1(21,9)
1

97 Ok;_, Oh;_
hi(z1,...,2,0) = hia+ <7§Zz) zifi(z1,0) + ( 82:11 + 73}1—1) fi(=,9),
i=2.. . n—1
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with g;(+) and h;(-) such that

(i —g1)o(en) < 0 (5)
(hi —Ri)o(e;)) < 0  i=1,...,n—1 (6)
and the control input is given by

u = _ﬁ’l(zla 22y ey zn) — Ynn-1 — €n—2 — a*sat(en_l) (7)

-~ 0 ~
fo = knoa(z1,...,20) + ﬂzn +hn1(z1,- -y 20, 0) (8)

821

0 = —en1w’ Y >0 ©)

a* and w* are solutions of the following min-max problem:
(0", w*) = min max [fn Ay (T 0)w] (10)

g and h can be chosen so as to satisfy eqs. (5) and (6) in the following manner: g is a bounding
function for f chosen as

‘o) { max [0, f(z1,0)] + € Va2, >0

%Iéiél [0, f(z1,0)] —€ef V21 <0

(11)

where ¢; is an arbitrary constant. Then, define a bounding function as:

F(z;) Vx| >e€

G(z1) = { (12)
S(.’El) V |.’L'1| S €

where ¢ is also an arbitrary positive constant such that e < €7, and S(z;) is an arbitrary smooth
bounded function such that

S(z) = F()
8S(z) _ OF(z) (13)
or Oz

for |z| = e.
The proof of global stability of the proposed controller can be established as follows: From the
definition of the errors e; in Eq. (3), it can be shown that

o = e+ hHh—m (14)
) 0
€y = 23+—g—1‘22+h1
aZl
We define for: =1,...,n,
0
filz1,...,2,0) = ki—l(zh---,zi—l)+6—‘z—1“2i+hi—1(21,--~,zi,9)
1

and 2,,.; = w. It can then be shown that

é1 = z3+ fa(z1,22,0)
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The method of induction can be used to show that
& = zipa+ fira(21,. -0 200, 0) (15)
This follows by using the relations
€& = €-2tziy1t+ g
and
éia = zi+ fimi(z1, 22, .-, 2i21,0)

and the definitions of k;, h;, and f;. As a result equations (14), (15),¢=1,...,n — 1, and (7)-(9)
define the closed-loop adaptive system.

We choose
1 n—1 _
V = - (Z e? + 92)
2 t=0

as a Lyapunov function candidate for the closed-loop adaptive system. This leads to the time-
derivative

n—1
V = ebo+ Y elzi+2+ fir1) — en 16w’

=1

n—2
= Y e (fix1 — gir1) + €n (fn — fn — a’sat(en_1) + 960*) (16)

i=0
Egs. (5) and (6) imply that the first term is nonpositive. Eq. (10) implies that the second term is
nonpositive. Together, they lead to the conclusion that e;, ¢ = 0,...,n — 1, and 8 are bounded.
From the definition of the e;’s it can be shown that forz = 1, ..., n, z; and u are bounded, and that

Extensions of the above result when (i) z; is required to track a desired trajectory zy, (ii) when
bounded disturbances d; are present, and (iii) for systems with triangular structures of the form
1 = () + fi(z,61)
, a7
T2 = 7(x)u+ foz1, 22, 60;)
are currently being investigated. Preliminary investigations show that global boundedness can be
established in each of these cases. A paper [P1] is currently under preparation summarizing all of
the above results.

3 Parameter Convergence

A large class of problems in parameter estimation concerns nonlinearly parametrized systems
(NLP). In the past few years, a stability framework for identification and control of such systems
has been established. Over the past three years, we have addressed the issue of parameter con-
vergence in such systems. Systems with both convex/concave and general parameterizations have
been considered. The convergence results are stated separately below for discrete time systems
and continuous time systems.



3.1 Convergence in discrete-time systems

In [15], we showed that for nonlinearly parameterized (NLP) discrete-time systems of the form of

= f(¢t——17 9)

an adaptive estimator with a min-max algorithm leads to global stability. The question is whether
the estimator can enable parameter convergence when the parameterization is concave or convex.
We have derived sufficient conditions on the input ¢ and the nonlinearity f under which parameter
convergence results using the min-max algorithm. In section 3.1.2, a specific example of f and ¢
that satisfy these conditions is presented.

3.1.1 Parameter convergence in the presence of concave/convex nonlinear parameterization

The underlying dynamic system is of the form:

Yt = f(¢s-1,0)

Ut = f(¢t—1, §t—1)

b, = 01 —Tokdipy  T5=Tp>0

K N

t N A + (,U;‘rrgwt

Pt = max{0,a;} (18)
2

a; = 2- —~—J0
lytl

Wy = arg 52%1 max sgn(7g:)J(w, )

J(w,ﬂ) = ft—l — W (gt—l - 9)

Jo = min max sgn(g)J(w, )
where ¢ : N — IR". For any ¢ and all § € © C IR", where © is a compact setin IR", f is assumed
to be either concave or convex. The problem is to find conditions on ¢; under which 6, converges

to f asymptotically.

It is assumed that the function f at any time instant can be either concave or convex with respect
to the parameter 6. This property of f shall be called as the curvature of f. It should be noted that
the case when f is linear in 8 represents the transition between concavity and convexity or vice
versa, and in such a case, the curvature can be labeled as either being convex or concave.

In LP systems, the term “persistently exciting” was used to characterize a signal which was
rich enough in content to enable the convergence of parameter estimates to their true values by
using the standard linear gradient-update algorithms (see [17, 5]). In order to distinguish it from
its counterpart for LP systems, we will use the term “NLP persistent excitation” to specify a signal
which allows convergence of parameter estimates to their true values in an NLP system, using the
min-max algorithm. The required conditions for a signal to be NLP-persistently exciting are stated
in Definition 1.



Definition 1 A function ¢ : N — IR™ is NLP-persistently exciting with respect to f(,0), where
f : R* x © — R, if at any time instant t,, given any 6,, 0, € © and ¢y > 0, such that
|62 — 61| > ep, there exist positive constants T and €; and a time instant t, € [to + 1,t, + T,
such that

(NLP-1) | (¢1,,602) = f (91,,01)| > €;

and at t = £, either

(NLP-IIa) sign (§(¢1,,02) — [ ($1,,01)) # sign (f(r,,02) — f (b, 61)) while the curvature of
f at t, and curvature of f at t, are the same or

(NLP-I1b) sign (f(3,,02) — f($1,,601)) = sign (f(¢,,62) — f (1., 01)), while the curvature of
f at t, and curvature of f at t, are different.

The requirements for NLP-persistent excitation consist of two components. The first compo-
nent is condition (NLP-I) and, when f is linear, it is equivalent to the LP persistent excitation,
as shown below. Condition (NLP-II) is a second component of NLP-persistent excitation and is
needed to overcome the presence of the dead-zone which in turn was required in the min-max
algorithm to ensure stability. Condition (NLP-II) essentially states that, periodically, the probing
input ¢ should be such that f is appropriately dithered resulting in a change of either its curvature
or its magnitude.

In order to establish parameter convergence in Eq. (18), we note first from the results of [15]
that ||| is non-increasing and that it is possible for adaptation to stop, which occurs whenever p is
small. To accommodate this behavior, the following notation is introduced. Let the set {2p denote
the set of all time such that

Qp={t|0< pt <€}, where ¢, is a constant € (0, 2). (19)

If €, is sufficiently close to zero, then £2p represents the time the system spends in the “dead-
zone” where parameter adaptation is turned off. The complement of Qp is defined as Qf =
{t| p+ > €,}. The question therefore is whether ¢; can be chosen so that the trajectories lie in
NS sufficiently often, which is answered in the affirmative below. As a first step, an important

lemma which states a necessary condition for the system to be in the “dead-zone” is given. This is
followed by Theorem 1 which presents the main result in parameter convergence.

Lemma 1 For the adaptive system given by Eq. (18), if t € §2p then either

(D1) fi_y is concave in§, and y; > 0 or

(D2) fi_1isconvexin@, andy; < 0.

Theorem 1 For the system given by Eq. (18), if ¢ is NLP-persistently exciting and 6, € O Vt, then
f; - 0ast — oo.




3.1.2 An example of NLP-persistent excitation

In this section, we provide one example of the function f and a corresponding input ¢ that satisfy
conditions (NLP-I) and (NLP-1I) so as to enable parameter convergence. This example is given by:

f=e?"? (20)

where ¢ : N — IR, § € © C RN. The following definition states the desired property of the
probing signal ¢.

Definition 2 Let w € IR" be any unit vector. A bounded function ¢ : N — " is said to belong
class K" if for any t, > to, there exist positive constants €4 and T, and a time instant t, €

[ta + 1,t, + T such that
T
¢t,, w > €y
Definition 2 states that, periodically, the vector ¢ should have a positive component along every

w in IR™. This is more restrictive than the linear case requirements [20], since the latter requires ¢
to merely have a nonzero component periodically along every vector in R™.

Lemma 2 For f defined as in Eq. (20), ¢ € K™ implies that ¢ is NLP-persistently exciting.

An example of a function that belongs to class K? is
¢ =[sinvt,cosvt]" (21)

Since such a ¢ represents a rotating vector IR? with a constant angular velocity, it follows that it
aligns itself with every w in IR? periodically.

3.1.3 A special case

A specific example of an NLP system is one that contains sinusoidal signals with unknown fre-
quencies and amplitudes, of the form

y(t) = éai sin(w;é(t))

and the task is to estimate a; and w; using all available data. Such problems arise in a number of
applications related to vibration, noise suppression, and precise positioning [19]. Given that w; is
a parameter that occurs nonlinearly, the question is whether direct estimation of w; and a; can be
carried out using the approaches that were discussed above. Our preliminary investigations show

that an estimation algorithm of the form
gj - Z ai sin(&iqﬁ)
i=1
4 = —(7—y)sin(@9)
;= —(§—y)g (22)

where g; correspond to the gradient of the nonlinearity evaluated at the current parameter estimate
leads to global parameter convergence under certain conditions.
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3.2 Parameter Convergence in Continuous-time Systems

In this section, results related to continuous-time systems are presented. First, we consider sys-
tems with convex/concave parameterization where sufficient conditions are derived under which
parameter estimates converge to their true values using a min-max algorithm as in [12]. Next,
we consider general parameterizatons where, to achieve parameter convergence, a hierarchical
min-max algorithm is proposed where the lower-level consists of a min-max algorithm and the
higher-level component updates the bounds on the parameter region within which the unknown
parameter is known to lie. Using this hierarchical algorithm, a necessary and sufficient condition
is established for global parameter convergence in systems with a general nonlinear parameteriza-
tion. In both cases, the conditions needed are shown to be stronger than linear persistent excitation
conditions that guarantee parameter convergence in linearly parametrized systems. Explanations
and examples of these conditions and simulation results are included to illustrate the nature of
these conditions are also included. A general definition of Nonlinear Persistent Excitation (NLPE)
that leads to parameter convergence is proposed at the end of the paper.

Our objective is to identify unknown parameters in a class of nonlinear systems of the form
v = —a(u)y + f(6o, u) 0 < tmin < a(u) < Amaz- (23)

where 6 € ° C IR® are bounded unknown parameters and u € IR™ are inputs. The function f is
a scalar valued function given by f : IR* x R™ — IR.

We make the following assumptions regarding » and f.

Assumption 1 The input u is Lipschitz in ¢ so that

fu(t) —w(t)ll < Upllts —tall, Vi, 22 € RY.

Assumption 2 f is Lipschitz with respect to its arguments, i.e.

[7(6 + A0, u+ Au) — f(0,u)] < Bl|(Au, AD)|| < By (|| Aull + [|AG))).

Let a set U; be defined as follows:
UI = {ui) izla“wjy Ui:,é’LLj, 1‘75.77 uiERm}- (24)

We introduce the definition of an identifiable function which is necessary for parameter conver-
gence.

Definition 3 A function f(0,u),0 € Q C R" is identifiable over parameter region §) with respect
to Uy if there does not exist 0,0, € () and 0, # 0, such that

gll)nall f(07 u’z) = éll{?zf(aauz) Vui € UI77' = 17 7I

Definition 3 implies that identifiability follows if the system of equations
f(g, ui) - f(t’?o,ui) = 0 V’U,i € U[ (25)

9




has a unique solution 6 = 6, for any 0y € 2. Equation (25) provides a procedure for constructing
U; such that for a given €2, f can become identifiable over 2. That is, the number I and the value
u;, for ¢ = 1, ..., I must be chosen such that Eq. (25) has a unique solution.

We also note that for a given (2, identifiability of f is dependent on the choice of U;. For
example, if f is linear, then f is identifiable over any 8 € IR" if elements of U; span the entire
space of IR™; for a nonlinear f, identifiability may be possible even if these elements span only a
subspace. We notice that if f is not identifiable with respect to Uy, it implies that we have no way
of identifying 6, using any input u; in U;.

The dynamics of parameter estimation algorithm that we propose is the same as the min-max
algorithm in [12] and is as follows: Suppose 2° is the unknown parameter region,

—a(u)je + £(6,u) — f(6o,u) — a*sat(L)

)
0 = —4p". 20
where _
§=9-v G =g-cat(¥), G=0-6, @)
and a* and ¢* come from the solution of an optimization problem
o' = min maxg(d,u,¢) (28)
¢" = arg min maxg(9,u,¢)

90u.6) = sat (L) (70,4 10,0 - 670 - 0)).

Our objective is to find conditions on v and f so that the system in (26) is uniformly asymptotically
stable in the large.

3.2.1 Parameter Convergence in Systems with Convex/Concave Parameterization

The main stability result is stated in in this section in Theorem 2. As mentioned earlier, the region
of attraction of the trajectories of (26) is shown to be a neighborhood D, of the origin z = 0.

Theorem 2 If (i) f(0,u(t)) is convex (or concave) on Q) for any u(t) € IR™, and (ii) for every
t, > to, there exist positive constants Ty, €, and a time instant t, € [t1, t; + Tp) such that for any

0

Blu(tz)) (F(0,ultz)) — f(80, u(t2))) = €ullf — 6ol 29)
where B(uy) = 1if f is convex and —1 is f is concave, then all trajectories of (26) will converge
uniformly to

D.={z|V(z) < m}, (30)
where
2
m = ;25 (16BsUs + 8By B, + 4B2) , 31)

10




€ is defined as in (26), €, is given by (29), U, and By are defined as in Assumptions 1 and 2, and
By is the bound on ¢* in (28) so that

lg* ()| < Bg, VE>ty, Vit

The proof of Theorem 2 follows by showing that if u and f are such that condition (29) is
satisfied, then (¢) becomes large at some time ¢ over the interval [¢;, ¢ + Tp). Once 7, (t) becomes
large, it follows that V'(¢) decreases over the interval [t1, ¢, + Tp] by a finite amount.

Remark 1: If f is concave (or convex) for all # €  and if f satisifes the inequality in Eq.
(29), we shall define that f satisfies the Convex Persistent Excitation (CPE) condition with respect
to u. Theorem 2 implies that if f satisfies the CPE condition with respect to u, then parameter

convergence to a desired precision € follows.

Remark 2: From the definition of D,, it automatically follows that as ¢ — 0, all trajectories
converge to the region z = 0 and hence u.a.s.1. follows.

3.2.2 Sufficient Condition for Parameter Convergence

The CPE condition specifies certain requirements on f in order to achieve parameter convergence.
For a given f, theorem 2 does not state how u should behave over time in order to satisfy (29). In
this section, we state some observations and examples of u that satisfies (29) for a general f.

Equation (29) consists of two separate requirements. Denoting f = f(8,u) — f(6y,u), the first
requirement is that the magnitude of f must be large. The second requirement is that f must have
the same sign as (. The first component states that for a large parameter error, there must be a large
error in f. It is straightforward to demonstrate that this condition is equivalent to linear persistent
excitation condition in [20], and is shown in section 3.2.3. The second requirement states what the
sign of f should be in relation to the convexity/concavity of f. If f is convex, f should be positive,
and conversely, if f is concave, f should be negative.

The coupling of convexity/concavity and the sign of the integral of f has the following practical
implications. Suppose that u is such that f is always identifiable. To ensure parameter convergence,
u must be such that one of the following occurs: At least at one instant ¢5 € [t1, ¢, + T,

(a) For the given 6, u must change in such a way that the sign of f is reversed, while keeping
the convexity/concavity of f the same, or

(b) For the given 0, u must reverse the convexity/concavity of f, while preserving the sign of f

3.2.3 Examples

We illustrate the above comments using specific examples of f. Suppose
f=e (32)

where u : R — R"”, # € @ C IR". It can be checked that f given in (32) is always convex
with respect to @ for all u. Therefore, option (b) is not possible. Hence, u must be such that f can

11




switch sign for any g as required by option (a). One example of such a u is if for any ¢,, there

exists tp € [t;, t1 + 7] such that
uwI(t)w > e, (33)

where w is any unit vector in IR". Another example which satisfies condition (29) is given by
=20 u € R.
It is easy to show that for such an f, condition (b) is satisfied if u switches between u; and u,
where u; < 1 and uy > 1.
The above examples show that the condition on u that satisfies Eq. (29) varies with f.

Relation to Conditions of Linear Persistent Excitation The relation between CPE and LPE is
worth exploring. For this purpose, we consider a linearly parameterized system, which is given by
Eq. (23) with

£ (8o, u) = 05 ¢(u)
where ¢(u) € IR™. In this case, it is well known that the corresponding estimator is given by
equation (26) with a* = 0 and ¢* = ¢ [5]. The resulting error equations are summarized by

—a(u)fe + 67 ¢(u)
= ~Fep(u).

In [20], it is shown that u.a.s.l. of (34) follows under an LPE condition. For the sake of complete-
ness, we state this condition below.

(34)

D@

Definition (LPE): ¢ is said to be linearly persistent exciting (l.p.e.) if for every t; > ¢y, there
exists positive constants T, &g, €9 and a subinterval [to, ¢ + do] € [t1, 1 + Tp] such that

[ gty 2 el (35)

We now show the relation between the LPE condition and the CPE condition in (29). When
f(0,u) = 67 ¢(u), if Assumption 1 holds, it can be shown that the LPE condition is equivalent to
the following inequality: For every t; > ¢, and 8, there exists positive constants Ty, €, and a time
instant ¢ € [t;, t; + Tp) such that

|0, u(t2)) — £ (8o, u(t2))] > €u]l6 — o). (36)
Since a linear function can be considered to be either convex or concave, the inequality in (36) is

equivalent to the CPE condition in (29). This equivalence is summarized in the following lemma:

Lemma 3 When f(0,u) = 6T¢(u), if Assumption 1 holds, the CPE condition in Eq. (29) is
equivalent to the LPE condition in Eq. (35).

It should be noted that for a general nonlinear f, the CPE condition becomes more restrictive than
the LPE condition. For example, for f as in (32), the CPE condition implies that u must satisfy
(33). On the other hand, if f = u7, even if u is such that |u” (t,)w]| is periodically large, the LPE
condition is satisfied.
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A Counter-example For a general function f, it may not be possible to find a u that satisfies either
condition (a) or (b) mentioned above. A simple example is

f = cos(6u)

where |u] < Upgr and 8 € [0, 7/(2uUmaz)]- We note that f is concave and monotonically decreas-
ing for any u with |u| < un... Hence neither (a) nor (b) is satisfied. That is, it is possible for
the min-max algorithm to result in the parameter estimate fto get “stalled” in a region inQ2°. This
motivates the need for an improved min-max algorithm, and is outlined in section 3.2.4.

3.2.4 Parameter Convergence in Systems with a General Parameterization

In the previous section, we showed that if a function f is convex (or concave), and if f and u
satisfy the CPE condition, then parameter convergence follows. However, as we saw in section
3.2.3, not all convex/concave functions can satisfy the CPE condition. In this section, we present
a new algorithm which not only allows the persistent excitation condition to be relaxed but also
enables parameter convergence for non-convex and non-concave functions.

The algorithm we present in this section is hierarchical in nature, and consists of a lower-level
and a higher-level. In the lower-level, for a given unknown parameter region §2°, the parameter
estimate @ is updated using the min-max algorithm as in (26). In the higher-level, using information
regarding the parameter estimate # obtained from the lower-level, the unknown parameter region
is updated as Q. Iterating between the lower and higher levels, the overall hierarchical algorithm
guarantees a sequence of parameter region QF. The properties of these two levels are discussed

below.

Lower-level Algorithm The lower-level algorithm consists of the min-max parameter estimation
as in (26) with the unknown parameter 6, € QF. We show in this section that when this algorithm
is used, the asymptotic convergence of (t) to zero occurs in a finite time. Once g, becomes small,
we estimate the region that the unknown parameter can lie in using the corresponding parameter
estimate 6%. This region is used in the higher-level part of hierarchical algorithm to update the
unknown parameter region from QF to QF+1. The convergence of . is stated in Lemma 4, and the
characterization of the unknown parameter is stated in Lemma 5.

Lemma 4 For the system in (23) and the estimator in (26), given any positive T and b, there exists

a finite time t, such that
7)) <6 forty <t <t +7T. (37)

We note that for every specific input u, a time ¢, that satisfies (37) exists. However the value
of t; will depend on the choice odf u. Since our goal is parameter convergence, we require u to
assume distinct values, i.e. persistently span a set of interest. This is stated in the definition below.

Let U; be defined as in Eq. (24).
Definition 4 w is said to persistently span Uy if for any u; € U and any t,, there exist a finite T;
and 1; such that

’U,(Ti) = U; T; € [tl, tl +II;] 7 = 1, ,I (38)
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Definition 4 implies that « periodically visits all points in U;.

Let
B = 2By(6By + 2U,) + 6 B3, (39)
if we choose T as
2/B:(6 +
T=maxT; + —t(—-—-e—)-
1<i<T B,

where T; is given by (38), then Lemma 4 implies that there exists a finite time ¢; such that
7| <6 t<t<t+T. (40)

When g, satisfies (40), we refer to it as lower-level convergence. If u persistently spans Uy, then
Definition 1 and the choice of 7; implies that at 7; € [t1, 1 + T}, u(r) = u;, i = 1,...,1. The
parameter estimate 6(7;) at time instances are defined as

9:1‘29(7',) 1= 1,,],
and are denoted as low-level convergent estimates. We characterize the region where the unknown
parameters lie in lemma 5 using these lower-level convergent estimates.

Lemma S For the system in (23) and estimator in (26), let §) be the unknown parameter region
and 05,1 = 1, ..., I, be the lower-level convergent estimates. If the input u persistently spans Uy,
then .

0o € [ (2, us€,6,65).

=1

where
(2, wiy €, 6,07) = {0 € QIf, < f(0,u) < T}
£ = 105, w) = @4 (05, 0) = aimasd — 2y/Bu(6 + )
Fi= F(68,u;) + a* (65,u) + Omaz0 + 21/ By(8 + €)}
and B, as in (39).

Higher-Level Algorithm We now present the higher-level component of the hierarchical algo-
rithm. Here, our goal is to start from a known parameter region 2* that the unknown parameter 6,
lies in, and update it as Q*+! using all available information from the lower-level component. In
particular, we use ®, to update Q. In order to reduce the parameter uncertainty, different ®’s are
computed by varying u;, i = 1, ..., I. The resulting Q**! is chosen as

T
QF = () ®(QF, us, €, 6, 65).
=1

We state the complete hierarchical algorithm below:

Step H1: Set k = 0 and QF = Q% and T’ = max; T; + 21/B;(6 + €) /B,.
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Step H2: Run the estimator in (26). Wait until time ¢; where
[7:(t)] < & fort € [t;, ty + T,

and record the low level convergent estimate éf as

~

6° = 6(r;)

where
U(Ti) = U, A4 T; € [t;, tz + T]

Step H3: Calculate Q*+! from Q* and 6¢,i = 1, ...I, as follows:

1
Q= 2(F, i€, 6, 67).
=1
Step H4: If QF+! = QF, stop. Otherwise, set k = k + 1 and return to step 2.

The question that remains to be answered is whether Qf+! is a strict subset of QF so that
parameter convergence of 8 to §, can be ensured.

Parameter Convergence with the Hierarchical Algorithm We now address the question of pa-
rameter convergence of the hierarchical algorithm. For ease of exposition, we set € = § = 0. The
effects of nonzero € and d, as mentioned above, simply affect the accuracy of the parameter error.
For € = § = 0, the hierarchical algorithm can be summarized as follows:

Step 1: Set k = 0 and QF = Q°, and 6 — 0.

Step 2: Run the estimator in (26). Wait until time ¢; where
[Te(t)] < 6 fort € [t;, t; + T,

and record the low level convergent estimate 6§ = () 7 € [t], 1 + T)

Step 3: Calculate QF+! from QF and é,ﬁ as follows:
O ={0e Q| fF < fo,w) <Trri=1,.1} 1)

where

I5 = (05, w) — X (65, wy), i=1,..1

=1

—ff = f(é]i;uz) + a’t—(élfnui% 1= 17 o

Step 4: If QF+1 reduces to the desired precision, we are done. Otherwise, set kK = k + 1 and
return to step 2.
We first define a measure V(Q*) as
m+1

Ve =S F -5

=1
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—k . . ...
where f, and _]_t_f are defined as in (41). Next, we introduce a definition for a “stalled” parameter
region A;:

Definition 3: For any C(, define f7 and f; as

fi=min f(6,u), i =maxf(6,u). (42)

Then we define A;((2) to be a “stalled” estimate-region of {2 as

We now prove a property of A;(£2) which explains why it corresponds to a “stalled” region in 2.

Lemma 6 If 6° € A;(QF) for any k, then
Y=  j=k+1,..

Proof of Lemma 6 follows directly from the definition of A; and the construction of *+1 in
41).

In Theorem 3, we propose the conditions needed for the higher-level convergence.

Theorem 3 For the system in (23) and estimator in (26), let f be identifiable over Q w.rt. U; and
u persistently span U;. The hierarchical algorithm outlined in Steps HI-H4 guarantees that
lim  6(t) =6, (44)

t—00,6—0,6—0
if and only if for any QQC$)y where 6, € S,
i=1,...,]

i=1,... i=1,...,1

where ¢ denotes the null set.

Remark 3: If f(0,u) is identifiable over 2 with respect to Uy, u persistently spans Uy, and f
satisfies the inequality (45), we shall define that f satisfies the Nonlinear Persistent Excitation
(NLPE) condition with respect to u. Theorem 2 implies that then NLPE of f with respect to u is
necessary and sufficient for parameter convergence to take place.

Remark 4: The requirement on u for f to satisfy the NLPE can sometimes be less stringent than
that on u for LPE. An example of this fact is for the parameter § = [a,w]”, and the cases (i)
1(6) = 6Tu, and (ii) f(#) = au; cos(wu,) where u, and u, are the elements of u. Clearly, for a u
such that u; = kuy, where k is a constant, u does not satisfy LPF, but f does satsify NLPE with
respect to u. As shown in Section 3.2.3, NLPE can impose more stringent conditions on u as well.

Remark 5: It should be noted that the NLPE condition guarantees parameter convergence for any
general nonlinear function f that is identifiable. This implies that the min-max algorithm outlined
in [21], which is applicable for even a non-convex (or a non-concave) function, can be used to
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establish parameter convergence. We include simulation results of such an example in Section
3.2.5.

Remark 6: It should be noted that a fairly extensive treatment of conditions of persistent excitation
has been carried out in [22, 23] for a class of nonlinear systems. The systems under consideration
in this paper do not belong to this class. The most distinct features of the system (23) is the
presence of the quantity a* and the quantity f(8,u) — f(6y, u), where the former can introduce
equilibrium points other than zero and the latter is not Lipschitz with respect to 8 — 6. As a result,
an entirely different set of conditions and properties have had to be derived to establish parameter
convergence.

Relation between NLPE and CPE In what follows we compare the NLPE and the CPE condi-
tions. In order to facilitate this comparison, we restate the CPE condition in a simpler form:

Definition 5 f is said to satisfy the CPE’ condition with respect to u if (i) f (0, u(t)) is convex (or
concave) on () for any u(t) € R™, and (ii) u is persistently spanning with respect to Uy, and

(i)  B(w) (f(8,u:) — f(6o, 1)) > €u]|6 — 6ol Vu; € Uy, (46)

We note that the only distinction between the inequalities in (29) and (46) is in the value taken
by u(t) for some t, in the interval [t, ¢ + T7. In (46) it implies that u(t,) assumes one of the finite
values u; in Ur while in (29), the corresponding U; can consist of infinite values. If u is “ergodic”
in nature so that it visits all typical values that it will assume for all ¢ over one interval, then it
implies that the two conditions (29) and (46) are equivalent. We shall assume in the following that

the input is “ergodic.”

Lemma 7 Let f(0,u;) be convex (or concave) for all € Q° and QCQP. Then the CPE' condition
implies the NLPE condition.

Remark 5: Lemma 7 shows that the CPE’ condition is sufficient for the NLPE to hold if f is
convex (or concave). Clearly, the CPE’ condition is not necessary, as shown by the counterexample
in Section 3.2.3. The NLPE condition therefore represents the most general definition of persistent
excitation in nonlinearly parameterized systems.

3.2.5 Simulation Results

We consider the system in (23) and the estimator in (26) to evaluate the performance of the hierar-
chical algorithm. The system parameters are chosen as follows:

f o= (9— %)2—}—12627}9{—5 (0—2+%)2}

where 6 is an unknown parameter that belongs to a known interval @ = [0,5]. The input v is
chosen as a sinusoidal function 4 = 1.1sin(2t). We note that the function f is non-convex (and
non-concave), whose values are shown in Figure 2 for u = 1,—1,0. It can be shown that f is
identifable with respect to {2 and that u is persistently spanning with respect to Uy = {1, —1, 0}.
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Figure 2. The output error §,(t) with ¢ using the hierarchical algorithm. € = 0.001 and § = 0.02.

The hierarchical algorithm in (26) together with steps H1 to H4 was implemented to estimate
6. The parameters ¢ = 0.001 and 6 = 0.02. Since u is a sinusoid, the parameter T' was set to
the corresponding period 7. The resulting output error ¢, parameter estimate 6, and the update
of the parameter region ) are shown in Figures 3- 5, respectively. The evolutions of the lower
and upper bounds f_f and 7f 1 = 1,2, 3 with respect to ¢ are also shown in Figure 6. A similar
convergence was observed to occur for any 6, in §2. These figures show that the update of QF is
not necessarily periodic. Once g, becomes smaller than ¢ over an interval T, the corresponding
parameter estimates and the upper and lower bounds on f; and therefore on §2 are computed. It was
also observed that just the min-max algorithm without the higher level component did not result in
parameter convergence.
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Figure 3. The parameter estimate §(t) with ¢ using the hierarchical algorithm. True parameter
value 6, = 2.
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Figure 4. The evolution of the parameter region QF with ¢, using the hierarchical algorithm. Note
that Q* is updated at instants ¢} such that |g.(¢)] < 6 fort € [t; — T, £}].

Figure 5. The upper-bounds ff and lower-bounds ﬁ of f(0,u;) with ¢ using the hierarchical
algorithm, for u; = 1, —1, 0. Tl’i1:—’ 72,_[2:— --, 72,i2:....
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4 Summary

Under this award, a systematic adaptive control theory for nonlinearly parameterized systems has
been derived. Adaptive control results for systems with a triangular structure have been demon-
strated, establishing global stability. Significant results for parameter convergence in such systems
have been derived, establishing the concept of Nonlinear Persistent Excitation for systems with
nonlinear parameterization and are illustrated using several examples. These results are expected
to have a significant impact on modeling and control of complex physical systems.
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